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Abstract
Purpose  Acute kidney injury (AKI) is a deleterious complication after total knee arthroplasty (TKA). The purposes of this 
study were to identify preoperative risk factors and develop a web-based prediction model for postoperative AKI, and assess 
how AKI affected the progression to ESRD.
Method  The study included 5757 patients treated in three tertiary teaching hospitals. The model was developed using data 
on 5302 patients from two hospitals and externally validated in 455 patients from the third hospital. Eighteen preoperative 
variables were collected and feature selection was performed. A gradient boosting machine (GBM) was used to predict AKI. 
A tenfold-stratified area under the curve (AUC) served as the metric for internal validation. Calibration was performed via 
isotonic regression and evaluated using a calibration plot. End-stage renal disease (ESRD) was followed up for an average 
of 41.7 months.
Results  AKI develops in up to 10% of patients undergoing TKA, increasing the risk of progression to ESRD. The ESRD 
odds ratio of AKI patients (compared to non-AKI patients) was 9.8 (95% confidence interval 4.3–22.4). Six key predictors 
of postoperative AKI were selected: higher preoperative levels of creatinine in serum, the use of general anesthesia, male 
sex, a higher ASA class (> 3), use of a renin–angiotensin–aldosterone system inhibitor, and no use of tranexamic acid (all 
p < 0.001). The predictive performance of our model was good (area under the curve 0.78 [95% CI 0.74–0.81] in the devel-
opmental cohort and improved in the external validation cohort (0.89). Our model can be accessed at https​://safet​ka.net.
Conclusions  A web-based predictive model for AKI after TKA was developed using a machine-learning algorithm featuring 
six preoperative variables. The model is simple and has been validated to improve both short- and long-term prognoses of 
TKA patients. Postoperative AKI may lead to ESRD, which surgeons should strive to avoid.
Level of evidence  Diagnostic level II.

Keywords  Acute kidney injury · Total knee arthroplasty · Total knee replacement · Machine learning · Prediction · End-
stage renal disease

Introduction

The reported complications of total knee arthroplasty (TKA) 
include deep vein thrombosis, a need for transfusion, infec-
tion, and acute kidney injury (AKI), but most are rare [2]. Of 
these complications, AKI is an independent risk factor for 
chronic kidney disease (CKD) and end-stage renal disease 
(ESRD), both of which are life-threatening and increase the 
duration of hospitalization [4, 5]. The risk-adjusted 90-day 
mortality was higher for patients with than without AKI (6.5 
vs. 4.4%) [9]. The incidence of AKI after TKA is 5–10% [7, 
23, 27]. The measures taken to prevent or delay AKI include 
maintenance of appropriate blood pressure and volume, 
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correction of anemia, and good oxygenation of tissue [15, 
16]. Despite such efforts, however, AKI requires active man-
agement in high-risk groups.

Electronic medical records (EMRs) accumulate massive 
amounts of data, facilitating machine-learning and the use 
of artificial intelligence [8, 12, 25]. Machine-learning mod-
els for prediction of AKI have also been developed; these 
have performed better than logistic regression for hospital-
ized patients and patients undergoing major surgery [14, 18, 
21, 24]. However, these models do not target TKA patients, 
have not performed well, and have employed impractical 
variables. In addition, all of these models were based on 
data from single centers and thus lack external validation. 
Moreover, the models use data that can be collected only 
retrospectively such as operating times [21] and length of 
hospital stay [17]. It remains unclear whether machine-
learning models can reliably improve patient prognoses in 
daily clinical practice.

This study examined the hypotheses that (1) there is a 
high-risk group of AKI after TKA and AKI is associated 
with the subsequent development of ESRD, and (2) post-
operative AKI can be predicted through machine-learning 
using only preoperative information. The purposes of this 
study were (1) to identify key preoperative risk factors for 
AKI development, (2) to develop and validate a machine-
learning model predicting postoperative AKI in TKA 
patients, (3) to assess how AKI affected the progression to 

ESRD, and 4) to provide an easy-to-use web-based program 
for orthopedic surgeons.

Materials and methods

Study population

The study population included patients who underwent 
TKA at three teaching hospitals. The developmental cohort 
included patients from two institutions treated from Janu-
ary 2012 to May 2019, and the validation cohort included 
patients from a third institution treated from June 2018 to 
May 2019. Patients who had undergone either unilateral 
or bilateral TKA were enrolled. Patients with established 
ESRD, for whom data regarding serum levels of creatinine 
were lacking, with stage 5 chronic kidney disease, and with 
preoperative serum levels of creatinine exceeding 4 mg/dL 
were excluded. Patients with ESRD were identified using the 
Korean Society of Nephrology registry [11].

A total of 5924 patients were screened for inclusion 
(2527, 2942, and 455 from institutions 1–3, respectively). 
After the exclusion criteria had been applied, 5302 patients 
from institutions 1 and 2 were assigned to the developmen-
tal cohort and the 455 patients from the institution 3 were 
assigned to the validation cohort (Fig. 1). The baseline char-
acteristics of both cohorts are listed in Table 1. The mean 

Fig. 1   The study population. 
TKA total knee arthroplasty, 
Cr creatinine, ESRD end-stage 
renal disease CKD chronic 
kidney disease
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Table 1   Baseline characteristics 
of the developmental and 
validation cohorts

*AKI acute kidney injury, SD standard deviation, BMI body mass index, ASA class American Society of 
Anesthesiologists classification, NSAIDs non-steroidal anti-inflammatory drugs, RAASis renin–angioten-
sin–aldosterone system inhibitors, BUN blood urea nitrogen, eGFR estimated glomerular filtration rate

Characteristics Developmental cohort 
(N = 5302)

Validation cohort (N = 455) p-value

Value Missing Value Missing

Age (SD) 71.1 (6.9) – 71.3 (6.0) – n.s
Sex
 M 610 (12%) – 72 (16%) – 0.006
 F 4692 (88%) 383 (84%)

BMI (SD) 26.8 (3.5) – 27.1 (3.7) 12 n.s
Type of surgery
 Unilateral 2867 (54%) – 308 (68%) –  < 0.001
 Staged bilateral 2142 (40%) 144 (32%)
 Contemporaneous bilateral 293 (6%) 3 (1%)

ASA class
 1 756 (15%) 146 (3%) 54 (12%) 5 (1%) n.s
 2 4072 (79%) 361 (80%)
 3 325 (6%) 35 (8%)
 4 3 (0%) 0 (0%)

Type of anesthesia
 General 232 (4%) 3 (0%) 25 (5%) – n.s
 Spinal 5067 (96%) 430 (95%)

Diabetes mellitus
 Y 1162 (22%) – 116 (28%) 47 (10%) 0.002
 N 4140 (78%) 292 (72%)

Use of NSAIDs
 Y 2310 (44%) – 166 (36%) – 0.003
 N 2992 (56%) 289 (64%)

Use of antithrombotics
 Y 1350 (25%) - 103 (23%) – n.s
 N 3952 (75%) 352 (77%)

Use of RAASis
 Y 1878 (35%) – 195 (43%) – 0.002
 N 3424 (65%) 260 (57%)

Use of diuretics
 Y 540 (10%) – 75 (16%) –  < 0.001
 N 4762 (90%) 380 (84%)

Use of tranexamic acid
 Y 3309 (62%) – 372 (82%) –  < 0.001
 N 1993 (38%) 83 (18%)

Use of a statin
 Y 1706 (32%) 301 (66%) 0.030
 N 3596 (68%) 154 (34%)

BUN (SD) 17.6 (5.7) 1 (0) 17.0 (5.6) 4 (1) 0.048
Creatinine (SD) 0.8 (0.2) – 0.8 (0.3) – n.s
eGFR (SD) 80.8 (16.3) – 82.0 (16.0) – n.s
Hemoglobin (SD) 12.9 (1.3) 1 (0) 12.9 (1.3) 5 (1) n.s
Platelets (SD) 244.5 (61.7) 5 (0) 248.3 (63.4) 5 (1) n.s
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ages were 71.1 [standard deviation (SD) 6.9] years in the 
development cohort and 71.3 (SD 6.0) in the validation 
cohort. Men comprised 12% and 16% of the development 
and validation cohorts, respectively; the corresponding BMI 
values were 26.8 (SD 3.5) and 27.1 (SD 3.7) kg/m2.

To compare the prognoses between the AKI and non-AKI 
groups, patients who progressed to ESRD through March 
2020 were followed. Patients with ESRD were identified 
using the Korean Society of Nephrology registry [11].

Surgical protocol

Antiplatelet agents including aspirin, warfarin, clopidogrel, 
heparin and Factor Xa inhibitors were discontinued 7 days 
before surgery. The developmental cohort was treated via 
either a parapatellar or mid-vastus approach depending on 
the surgeons’ preferences. A posteriorly stabilized implant 
was placed in more than 90% of cases and cruciate retaining 
implant was used in remaining cases. The validation cohort 
was treated via a parapatellar approach and a posteriorly 
stabilized implant was placed in all cases. One gram of intra-
articular tranexamic acid (TXA) was given unless contrain-
dicated by TXA allergy; a history of deep vein thrombosis, 
pulmonary embolism, or ischemic cardiac or cerebrovascu-
lar disease; and/or a glomerular filtration rate (GFR) less 
than 60 mL/min. Continuous passive motion (CPM) was 
applied 1 day after surgery. Ambulation was permitted 12 h 
after surgery. TXA was administered intravenously (10 mg/
kg). CPM commenced 2 days after surgery when the drain 
was removed.

Outcomes

The primary outcomes were development of AKI of any 
grade (stages 1–3) during the first postoperative week, 
and the effects of AKI on progression to ESRD. AKI was 
defined using the creatinine criteria for serum of the Kidney 
Disease-Improving Global Outcomes (KDIGO) group [13]. 
The baseline value was the last preoperative level within 
6 months before surgery. KDIGO urine output criteria were 
not applied. The effect of AKI on the development of ESRD 
was assessed using the odds ratio.

Predictor variables

Eighteen preoperative variables were initially chosen as can-
didate predictors based on the findings in previous studies 
[1, 10]. The demographic data included age, sex, and body 
mass index (BMI). The type of surgery, American Society of 
Anesthesiologists Classification (ASA Class), type of anes-
thesia (general or spinal), and diabetes mellitus status were 
extracted from preoperative records. The types of surgery 
included unilateral, staged bilateral (1-week interval), and 

simultaneous bilateral TKA. Blood urea nitrogen (BUN), cre-
atinine, hemoglobin, and platelet levels were extracted from 
laboratory results (the latest values within 6 months before 
surgery). The GFR was calculated using the chronic kidney 
disease epidemiology collaboration (CKD-EPI) equation [19]. 
To explore preoperative medication status, admission records 
were combined with in-hospital drug prescriptions. The drugs 
were classified into six categories: nonsteroidal anti-inflamma-
tory drugs (NSAIDs), renin–angiotensin–aldosterone system 
inhibitors (RAASis), diuretics, antithrombotic agents, TXA, 
and statins. NSAIDs, RAASis, and diuretics are nephrotoxic 
agents; antithrombotic agents and TXA affect intraoperative 
bleeding. Statins were examined separately, because many 
reports have indicated that these protect against AKI [3, 22]. 
Drug categorization was based on the Anatomical Therapeutic 
Chemical (ATC) classification. For RAASis, angiotensin-con-
verting-enzyme inhibitors (ACEis) and angiotensin II receptor 
blockers (ARBs) were combined. The drug details are listed in 
Supplemental Table 1.

Statistical analyses

All statistical analyses were performed using IBM SPSS 
statistics ver. 25 (IBM Corp., USA). A gradient boosting 
machine (GBM) was used to predict the probability of AKI, 
employing all predictor variables. GBM uses a series of 
decision trees, where each tree corrects the residuals of the 
previous trees. After each boost, the weights are recalcu-
lated. Python 3.7 was used to encode the machine-learning 
algorithm. Missing values were imputed using a built-in 
GBM algorithm. Three feature-selection methods were 
used: recursive feature elimination, forward elimination, 
and backward elimination. The stratified K-fold (K = 10) 
approach was used to measure predictive performance; the 
area under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve served as the metric. The Youden index 
was used to identify the optimal ROC curve threshold [26]. 
External validation was performed using all data from one 
institution as a test set (n = 455). Calibration was performed 
using the isotonic regression method and evaluated by draw-
ing a calibration plot.

Our model on the web

Figure 2 shows a schematic of our website. The Eli-5 library 
was used to weigh each feature.

Results

Table  2 shows the baseline characteristics of the two 
cohorts. Of the 5,302 patients, 539 (10.2%) were diagnosed 
with AKI after TKA. The AKI stages are listed in Table 3. 



Knee Surgery, Sports Traumatology, Arthroscopy	

1 3

The registry database indicated that 12 AKI (2.2%) and 
11 non-AKI (0.2%) patients progressed to ESRD (aver-
age 41.7 ± 18.5 months). The ESRD odds ratio for the AKI 
group, compared to the non-AKI group, was 9.8 (95% con-
fidence interval [CI] 4.3–22.4).

Of the 18 variables, six key predictors were selected for 
the model: preoperative serum creatinine levels, use of TXA, 
general anesthesia, use of RAASis, ASA class, and sex. The 
GBM importance plot is shown in Fig. 3. The stratified ten-
fold AUC was 0.78 (0.74–0.81) after internal validation of 
the developmental cohort. The final model exhibited an opti-
mal threshold of 0.098. The sensitivity and specificity of 
internal validation were 0.65 and 0.77, respectively. When 
AKI was predicted in the validation cohort, the AUC was 
0.89. The sensitivity and specificity of external validation at 
the same threshold were 0.92 and 0.78. Calibration plot is 
shown in Supplemental Fig. 1. Our model may be found at 
https​://safet​ka.net. When a user enters the six key variables, 
the model returns the probability of postoperative AKI, 
whether the patient is at high risk for postoperative AKI, 
and the weights of each of the six variables (Fig. 4).

Discussion

The most important finding of this study was that postop-
erative AKI may lead to ESRD, and that this risk can be 
predicted preoperatively by a machine-learning algorithm. 
This algorithm can also be applied in independent institu-
tions, because the predictive performance was maintained 
in external validation. Thus, this algorithm can be used to 
improve both the short- and long-term prognoses of TKA 
patients.

Six key preoperative variables to predict AKI after TKA 
were incorporated into a machine-learning algorithm; for the 
developmental cohort, the model yielded a stratified tenfold 
AUC of 0.78 (95% CI 0.74–0.81), a sensitivity of 0.65, and 
a specificity of 0.77. For the validation cohort, the values 
were 0.89, 0.92, and 0.78. Thus, the model is not institution 
specific. The model can be readily accessed in the outpatient 
clinic. Twelve patients (2.2%) of the AKI group developed 
ESRD, which leads to irreversible renal damage and a need 
for lifelong dialysis. The model classified all 12 patients as 
high risk. Thus, the model will improve long-term prognosis 
of TKA patients; high-risk patients require risk alleviation. 
The odds ratio for ESRD development was 9.8 (4.3–22.4) 
when the AKI and non-AKI groups were compared. Post-
operative AKI is, thus, very unsafe; surgeons should strive 
to avoid it.

Several studies have used machine learning to develop 
predictive AKI models [14, 17, 18]. However, the limita-
tions include the use of excessive numbers of variables (e.g., 
72–93 variables; some of these variables, such as the Braden 
score, are not measured routinely). An excess of variables 
compromises external validation (thus far, no model has 
been externally validated). To use models with high numbers 
of variables, EMR embedding is required, which is impracti-
cal and causes difficulty with respect to use in other institu-
tions. In addition, the models include both intraoperative 
and postoperative variables; thus, they cannot be used to 
plan surgery or management. One study claimed an AUC 
over 0.9 [15], but included the current serum level of creati-
nine, changes in that level, and length of hospital stay; thus, 
it predicted AKI after AKI onset or even after patient dis-
charge. Excluding the changes in the serum creatinine level, 
the AUC fell to 0.72, less than our AUC (0.78). Our model 
offers more robust prediction than others, but uses only six 

Fig. 2   Schematic diagram of 
our Web service. When a clini-
cian inputs patient informa-
tion, the server parses the data 
to Python. The risk for acute 
kidney injury is calculated, 
returned, and made visible

https://safetka.net
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Table 2   Comparison of the AKI and non-AKI groups of the developmental cohort,

*AKI acute kidney injury, SD standard deviation, ASA class American Society of Anesthesiologists classification, RAASis renin–angiotensin–
aldosterone system inhibitors, BMI body mass index, NSAIDs non-steroidal anti-inflammatory drug, BUN blood urea nitrogen, eGFR estimated 
glomerular filtration rate

Characteristics Developmental cohort (N = 5,302)

AKI (N = 539, 10.2%) non-AKI (N = 4763) Total p-value Odds ratio (95% CI)

Selected key variables
 Sex
  Male 128 (24%) 482 (10%) 610 (12%)  < 0.001 2.8 (2.2–3.4)
  Female 411 (76%) 4281 (90%) 4692 (88%)

 ASA class
  1 35 (7%) 721 (16%) 756 (15%)  < 0.001 (Reference)
  2 431 (81%) 3641 (79%) 4072 (79%)
  3 65 (12%) 260 (6%) 325 (6%) 2.3 (1.7–3.1)
  4 0 (0%) 3 (0%) 3 (0%)

 General anesthesia
  Y 54 (10%) 178 (4%) 232 (4%)  < 0.001 2.9 (2.1–3.9)
  N 485 (90%) 4582 (96%) 5067 (96%)

 Use of RAASis
  Y 264 (49%) 1614 (34%) 1878 (35%)  < 0.001 1.9 (1.6–2.2)
  N 275 (51%) 3149 (66%) 3424 (65%)

 Use of tranexamic acid
  Y 254 (47%) 3055 (64%) 3309 (62%)  < 0.001 0.5 (0.4–0.6)
  N 285 (53%) 1708 (36%) 1993 (38%)
  Creatinine (SD) 1.0 (0.4) 0.7 (0.2) 0.8 (0.2)  < 0.001 0.4 (0.3–0.5)

Unselected variables
  Age (SD) 72.6 (7.4) 70.9 (6.8) 71.1 (6.9)  < 0.001 1.0 (1.0–1.0)
  BMI (SD) 27.1 (3.6) 26.8 (3.5) 26.8 (3.5) 0.041 1.0 (1.0–1.0)

Type of surgery
  Unilateral 317 (59%) 2550 (54%) 2867 (54%) n.s (Reference)
  Staged bilateral 193 (36%) 1949 (41%) 2142 (40%) 0.9 (0.7–1.0)
  Contemporaneous bilateral 29 (5%) 264 (6%) 293 (6%) 0.9 (0.6–1.3)

Diabetes mellitus
  Y 188 (35%) 974 (20%) 1162 (22%)  < 0.001 2.1 (1.7–2.5)
  N 351 (65%) 3789 (80%) 4140 (78%)

Use of antithrombotics
  Y 191 (35%) 1159 (24%) 1350 (25%)  < 0.001 1.7 (1.4–2.1)
  N 348 (65%) 3604 (76%) 3952 (75%)

Use of diuretics
  Y 90 (17%) 450 (9%) 540 (10%)  < 0.001 1.9 (1.5–2.5)
  N 449 (83%) 4313 (91%) 4762 (90%)

Use of NSAIDs
  Y 230 (43%) 2080 (44%) 2310 (44%) n.s 1.0 (0.8–1.2)
  N 309 (57%) 2683 (56%) 2992 (56%)

Use of statins
  Y 203 (38%) 1503 (32%) 1706 (32%) 0.004 1.3 (1.1–1.6)
  N 336 (62%) 3260 (68%) 3596 (68%)

 BUN (SD) 21.0 (8.2) 17.2 (5.2) 17.6 (5.7)  < 0.001 0.9 (0.9–0.9)
 eGFR (SD) 67.2 (22.4) 82.3 (14.7) 80.8 (16.3)  < 0.001 1.0 (1.0–1.0)
 Hemoglobin (SD) 12.6 (1.6) 12.9 (1.2) 12.9 (1.3)  < 0.001 1.2 (1.1–1.3)
 Platelets (SD) 238.2 (64.9) 245.2 (61.3) 244.5 (61.7) 0.012 1.0 (1.0–1.0)
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variables selected in a sophisticated manner. All six are com-
monly measured; external validation was simple. Despite 
differences in the postoperative rehabilitation protocols of 
the developmental and validation cohorts, our model exhib-
ited high external validation. Thus, this model is suitable for 
use in other institutions. The developmental cohort was not 
overfitted. All variables are preoperative. The AKI risk is 
known when the operation is planned. Measures preventing 
AKI can be implemented and the operational schedule can 
be changed.

The preoperative serum level of creatinine is critical in 
terms of AKI prediction; a higher level indicates greater 
patient vulnerability, suggesting that poor basal renal func-
tion is the most significant risk factor for postoperative 
AKI, consistent with previous studies [1, 10]. General 
anesthesia, RAASi use, and male sex were selected as sig-
nificant predictors; these are known AKI risk factors. The 
ASA classification is widely used to assess preoperative 

health; hypertension and diabetes mellitus status are evalu-
ated. ASA class was included because underlying diseases 
affect renal function. Notably, TXA usage was lower in 
the AKI group than in the non-AKI group (OR = 0.5). 
This synthetic anti-fibrinolytic agent is commonly used to 
prevent and treat bleeding. TXA adversely affects kidney 
function; however, TXA usage was associated with lower 
incidences of AKI in both developmental and validation 
cohorts. TXA reduces hemorrhage, thereby maintaining 
hemodynamic stability, and is less commonly used in 
patients with impaired renal function.

Our work had several limitations. First, the AKI inci-
dences in the developmental and validation cohorts were 
10.2% and 3.1%, respectively, perhaps because more 
patients in the validation cohort were prescribed TXA 
(82% vs. 62%). However, our model exhibited a high AUC 
in terms of validation cohort predictions, with a very high 
sensitivity and specificity (0.92 and 0.78, respectively) 
at the optimal threshold. Although the AKI incidence 
differed between the two cohorts, the excellent external 
validation indicates that the model can be used univer-
sally. Second, the study cohort included a high propor-
tion of women. In a 2010 study conducted in the USA 
and a 2008 study conducted in the UK, the proportions 
of women were 63% [20] and 57% [6], respectively; our 
proportion was 88%. However, sex was a predictor of AKI 
in our model. Thus, this model can be applied to popula-
tions with various sex ratios. Third, the medication vari-
ables were acquired from medical records. Some records 
might have been missing initially; whereas, some may 
not have been extracted appropriately by the algorithm. 
Lastly, because this was a retrospective study, identifica-
tion of AKI was limited; serum creatinine measurement 
was performed routinely, but not daily. The exclusion of 
patients without serum creatinine data might have caused 
selection bias.

Conclusion

A web-based predictive model for AKI after TKA was 
developed using a machine-learning algorithm featuring 
six preoperative variables. The model is simple and has 
been validated to improve both short- and long-term prog-
noses of TKA patients. Postoperative AKI may lead to 
ESRD, which surgeons should strive to avoid.

Table 3   Severities of acute kidney injury in the developmental and 
validation cohorts

AKI acute kidney injury

AKI stage Developmental cohort 
(N = 539)

Valida-
tion cohort 
(N = 14)

1 514 14
2 20 0
3 5 0

Fig. 3   The feature importance plot of the complete model. RAASis 
renin–angiotensin–aldosterone system inhibitors; ASA American 
Society of Anesthesiologists
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